
CSC 346 - Cloud Computing
01: What is the Cloud? An introduction to Docker

The Cloud

The Cloud

• Using someone else’s computers is actually pretty useful

The Data Center

• Not too long ago, pretty much all big applications ran on physical servers in
data centers that the Company or University controlled.

The Data Center

• Our Apps pretty much used to be
installed on specific physical
servers.

• If it was a big app, maybe it was
distributed across several
physical servers.

The Data Center

• Required a lot of guessing about the
future

• How much memory?

• How many CPUs?

• 1 server? 10 servers?

• If I need more, how long will it take
to order them, ship them, rack
them, install the app…

• If I bought too much, what then?

The Data Center

• Also problematic for smaller
applications

• Don’t need a whole server for
some smaller apps or sites

• Can put multiple applications
on the same server

• Difficulties with cross
dependencies

The Data Center - Virtual Machines

• Virtual Machines allowed one
massive server to host many
smaller virtual machines.

• This solved a lot of problems

• Isolated applications

• VMs can be sized to meet the
application needs

• Some overhead for growth

The Data Center - Virtual Machines

• Still had problems

• Expensive initial purchase

• Had to guess about future

• You could expand later, but
might not get identical
equipment

• If needs change drastically you
may still be caught short on
resources

The Data Center - Virtual Machines

• “Spiky Workloads” are a particular
problem for a datacenter

• If your application gets slammed
at particular times (say… for
priority registration)

The Data Center - Virtual Machines

• You have to have enough
resources to meet that peak
demand year round

• That costs a lot of money

• That excess capacity is
“wasted” much of the time

• VMs help some, as that excess
capacity can be used by short
lived projects

The Cloud

• Using someone else’s computers is actually pretty useful

• Instead of purchasing physical hardware, you rent it from someone else

• Costs move from large periodic capital expenses, to smaller monthly
operational expenses. (Budget people love this)

• $100,000 in year 1 - Lasts for 5 years (hopefully)

• $2000 per month for 5 years

• A bit more expensive over the long term possibly, but you don’t need
$100,000 up front

The Cloud

• The biggest advantage of the
Cloud is flexibility

• Instead of paying for peak
capacity year round, you can
only pay for the 2 week spike

• So maybe instead of $2000 a
month its only $500 most
months, and $2,000 that one
peak month  
($27,500 + $10,000 = $37,500)

The Cloud

• Autoscaling - detect when your backend hosts are getting stressed and
automatically deploy more backend resources. Get rid of them as the load
subsides

• Experiments - deploy additional development environments in parallel to your
production environments. Maybe each developer or feature gets dedicated
resources

• Try new things faster - you don’t have to wait for new CPUs to be delivered to
your datacenter. You can try new resources quickly and relatively cheaply.

Flexibility enables many different use cases

The Cloud

• Cloud vendors offer many higher level services that shift the compute
calculation

• Virtual Servers are pay per hour. You pick a configuration, and it costs that
much as long as you have the server “on”.

• Other services are pay per request. You configure the service, and then you
pay a small fraction for each request the service handles. This can offer
tremendous savings for smaller services, but could also benefit large ones.

• Become, hire, or befriend a cloud economist.

Pay Per Hour vs Pay Per Request

The Cloud
Datacenter Application Model

Shifting Skillsets

Developers

Operations
Staff

Systems
Administrators

Datacenter
Technicians

Business
Managers

Datacenter
Resources

Provide Development
Direction

Deliver
Code Deploy Code

Monitor Apps
Maintain

Operating Systems

Install and
remove

hardware

Provide
Purchase Direction

The Cloud
Cloud Application Model

Shifting Skillsets

Developers

DevOps

Business
Managers

Cloud
Resources

Provide Development
Direction

Develop
Automation

Deploy Code
Monitor Apps

The Cloud
Shifting Skillsets

Developers

Operations
Staff

Systems
Administrators

Datacenter
Technicians

Business
Managers

Datacenter
Resources

Provide Development
Direction

Deliver
Code Deploy Code

Monitor Apps
Maintain

Operating Systems

Install and
remove

hardware

Provide
Purchase Direction

What about these folks?

The Cloud
Shifting Skillsets

Developers

Operations
Staff

Systems
Administrators

Datacenter
Technicians

Business
Managers

Datacenter
Resources

Provide Development
Direction

Deliver
Code Deploy Code

Monitor Apps
Maintain

Operating Systems

Install and
remove

hardware

Provide
Purchase Direction

• These jobs don’t go away.

• Companies still have lots of datacenters

• Cloud Providers have lots of datacenters!

• Migrate to other Jobs

Application Development
It’s All About Speed of Deployment

• Research shows one of the best indicators of high performing development
teams is how often they deploy new code to production, and how fast they
can do this*

• Requires automation at all levels

• Cloud providers are easier to automate

• API First mentality

*Accelerate: The Science of Lean Software and DevOps: Building and Scaling High Performing Technology Organizations

Forsgren, Nicole ; Humble, Jez ; Kim, Gene ; 2018

Full text available at: O'Reilly Safari Learning Platform Academic

https://arizona-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=01UA_ALMA21382514420003843&context=L&vid=01UA

https://arizona-primo.hosted.exlibrisgroup.com/primo-explore/fulldisplay?docid=01UA_ALMA21382514420003843&context=L&vid=01UA

Application Development
How Do We Deploy Quickly?

• Datacenters

• It was hard. Each new host had to be manually configured, at least initially.

• After initial setup, automation tools like Chef, Puppet, and Ansible could be
used to setup a standard application environment, install dependencies, and
deploy the application.

• This process was still comparatively slow, taking minutes to hours to
complete.

• Operating system maintenance and patching could also be done through
these orchestration tools.

Application Development
How Do We Deploy Quickly?

• Virtual Servers

• Once the VM infrastructure was configured, a “master image” of an application
could be built.

• These images could then be deployed multiple times across VM infrastructure to
build out the desired capacity.

• Images needed to be kept up to date with security patches still.

• Deploying code meant pushing changes into an existing VM, or re-building the
entire VM image.

• Long-lived VMs still need to be managed with orchestration like Puppet, Chef,
Ansible

Application Development
How Do We Deploy Quickly?

• Cloud Computing with “Traditional” VMs

• Not really much different from VM infrastructure in your own datacenter.

• You’re still responsible for:

• Building images

• Operating system updates and patches

• Application code updates

• It’s still just someone else’s computer

• Faster. No “spare capacity” to maintain yourself.

Yeah, pretty much Docker

• Containers isolate all dependencies required to
run an application process

• Feels like a VM, but the underlying technology is
different

• Does not contain a full OS / Kernel

• All containers on a Host share the same
underlying Kernel

• Processes are isolated

Containers

• Container images are much smaller than full VM
images.

• Host container environment can be run on
commodity hardware. Does not require
specialized VM infrastructure.

• The same container can run on Linux, Windows,
macOS.

• Can run in Google Cloud, AWS, Azure

• Can run on your laptop

Containers

• Solves the age old problem of: 
 
 
 
 
 
 

• With Docker, you pretty much can do just that.

Containers & Docker

“Developer: well, it runs on my laptop. 
 
 Operations: great, give me your laptop, 
 I’ll put that into production.”

Key Concepts

• Containers isolate processes

• Containers encapsulate dependencies

• Running containers are ephemeral

• Images are immutable

• Images are composable

Containers & Docker

🧐

“that looks suspiciously
like something that

would show up on an
exam”

• Container isolate processes

• A container is meant to run one process

• You don’t run Apache, Django, and MySQL all
in one container

• Instead have three separate containers

• Allows each piece to be updated separately

Containers & Docker

• Container images are composable

• You can start from a “base” image, and build
your changes on top of this

• Allows other teams/companies to be
responsible for base configuration

• You just have to worry about your specific
dependencies

• No limit to how many layers you want to go

Containers & Docker

• Container encapsulate dependencies

• All the required libraries and code files for your
process can be built into the image

• A Dockerfile is used to define an image

• Using the Dockerfile you can then build the
image

Containers & Docker

Containers & Docker

FROM python:3.10

RUN pip install locust beautifulsoup4

RUN mkdir /tests

WORKDIR /tests

CMD ["locust"]

https://locust.io

https://locust.io

• Container images are immutable

• When you run an image, you create a running
container

• Each time you run a container based off an
image it’s exactly the same.

• Analogous to instantiating a class (imperfect)

Containers & Docker

• Running containers are ephemeral

• You don’t “shut down” a container (at least in
production)

• When a container terminates, all changes to
the container filesystem are lost

• Any data the needs to be persisted must
happen outside the container

Containers & Docker

• You all have different laptops

• Docker gives us a way to have a standard
development and evaluation environment across
widely varying hosts

• You can turn in Dockerfiles and code files for us
to run and test, without having to maintain a full
Virtual Machine

• Remember that containers do not save their
filesystem! Don’t lose your work!

Why Use Docker for CSC 346?

Specifically, ubuntu/debian linux

• Linux is the default for most cloud hosts

• Linux is cheaper than MS Windows for servers

• Many platforms default to ubuntu, so why fight it

• For example: official python images

UNIX Environments

FROM python:3.10

RUN pip install …

FROM buildpack-deps:bullseye

ENV PATH /usr/local/bin:$PATH
your Dockerfile python:3:10 Dockerfile

FROM debian:bullseye

buildpack-deps:bullseye Dockerfile

FROM scratch
ADD rootfs.tar.xz /
CMD ["bash"]

debian:bullseye Dockerfile

• Bell Labs in the early 1970s

• Spawned many Open Source derivatives

• BSD → Darwin → macOS

• Linux → Debian → Ubuntu

• Linux → Android

• Nearly unchallenged in the server / cloud space

• Great process model

• Developer friendly

• Great command line interface

What is UNIX?

Files and Directories

• Linux organizes a filesystem based mainly on files and directories

• Directories = Folders - We will not be pedantic about this 🙂

• A filesystem is organized into a directory tree

• Directories = branches Files = leaves

• A filesystem has a single root directory

• Linux uses the “forward slash”, or just “slash” as the directory delimiter

Linux Basics

/Users/mark/Documents/csc246/01-cloud-docker.key

Users and Groups

• Files are owned by users

• A ‘root’ user has access to everything

• Users can belong to groups

• File and Directories can have permissions that grant various access to users
and groups

• Docker containers run everything inside them as a local root user, this is
different from the host’s root user.

Linux Basics

Connecting

• A remote host is usually accessed through a Secure Shell - ssh

Linux Basics

$ ssh username@hostname

Connecting

• A local docker container can be accessed either through the initial run
command, or by an exec command.

Linux Basics

$ docker run -it --name python python:3.10 bash

Where Am I?

• When you first connect to a linux host, your CLI session will usually start in
the user’s home directory

• Docker containers usually start at the WORKDIR defined in that Image’s
Dockerfile

• If WORKDIR is not defined, you’ll start at the filesystem root: /

• Use pwd to see your filesystem location (Present Working Directory)

Linux Basics

What Stuff Is Here?

• To see the contents of the directory you’re in, use the ls command (list)

Linux Basics

CLI Arguments

• Most CLI commands support arguments and options. Tells the command to
do different things.

• The ls command accepts the -l option to list files in the long format.

Linux Basics

CLI Arguments

• By default the -l long format shows file sizes in bytes.

• Use the -h option to show sizes in human readable format.

• Multiple options can be combined with the same dash: -lh

Linux Basics

Moving Yourself Around

• To move to a different directory, use the cd command (Change Directory)

• If used without an argument, cd will take you to your home directory.

Linux Basics

Moving Yourself Around

• To move into another directory contained in the
current one, use cd dirname  
 
 
 
 

• To move up a directory, use the special “..”
directory

Linux Basics

Core CLI Commands
Linux Basics

pwd Prints your present working directory

ls Lists the files in your current directory

ls -lh Lists the files in your current directory in long form, with human readable file sizes

cd [dir] Change your current working directory to [dir]

mkdir [dir] Create a new directory named dir inside your current working directory

mv [from] [to] Move a file from one location to another. If to is not within another directory, it renames
the file in your current directory

cp [from] [to] Copy a file from one location to another

rm [file] Delete a file (remove it)

🧐

Core CLI Commands
Linux Basics

cat [file] Prints the full contents of file to the screen

grep [string] [file] Search file for the specified string

head -n[count] [file] Print the first n lines of a file to the screen.

tail -n[count] [file] Print the last n lines of a file to the screen.

tail -f [file] Print the last few lines of a file to the screen, and continue to follow it as
new lines are added.

less [file] Prints out the contents of the first page of a file to your screen, and gives you
keyboard commands for navigating through the file. Read-only.

CLI Text Editors

• Popular editors: vi, vim, emacs, nano

• All keyboard and text based. No mouse.

• I mostly try and avoid CLI text editors. I like my GUI!

• We’ll see many strategies for avoiding the CLI editors

• When I need to, I mostly use vim or vi depending on what is available

Linux Basics

STDOUT, Redirection, and Pipes

• UNIX has a concept of Standard Out (STDOUT) and Standard Error (STDERR)

• By default STDOUT is directed to your terminal screen

• STDOUT can be redirected to other places though

Linux Basics

ls -l > output.txt Sends the STDOUT of the ls command to a file named output.txt. If that file
exists, it will be overwritten. If the file does not exist, it will be created.

ls -l >> output.txt
Appends the STDOUT of the ls command to a file named output.txt. If that file
exists, it will add new output to the end of the file. If the file does not exist, it will be
created.

python3 ./prog.py | less
Pipe the STDOUT of the python program to less. This lets you scroll through the
output of prog.py while still letting new text come in at the bottom.

Microsoft VS Code

• Not required, but it’s really great

• Free

• GUI Text editor and terminal all in one

• Can open a local folder and use it as a project

• Customizable

• Plugins for just about everything

Development Environments

Microsoft VS Code
Development Environments

Microsoft VS Code
Development Environments

Microsoft VS Code
Development Environments

Microsoft VS Code
Development Environments

Installation

• For this class you will need access to Docker
Desktop on a computer

• Free for individual and educational uses

• Installers for Windows, Mac, and Linux

Docker

https://www.docker.com/products/docker-desktop/

https://www.docker.com/products/docker-desktop/

Our First Container

• Once you have Docker Desktop installed and running, you should see a
window like this.

Docker

docker run

• Starting a new container from an image is done with the docker run command

Docker

$ docker run [OPTIONS] IMAGE [COMMAND] [ARG...]

$ docker run -it python:3.10 bash

docker run

• The -it options are for interactive (i) and
connect tty terminal (t)

• The image is python and the tag for the image
is 3.10, this specifies which version of the
image to run

• Once the container is running, we execute the
bash command inside it. Since we connected
our terminal to this, we should get a command
prompt ‘inside’ the container

Docker
$ docker run -it python:3.10 bash

Our First Container

• We can run this command
in our terminal

• Because we have never
used the python:3.10
image before, it must be
downloaded from
hub.docker.com

Docker

Our First Container

• Once the image has
downloaded, our bash
command is executed
inside.

• You can see our terminal
prompt has changed

• We’re root inside the
container

Docker

root@e005c0828798:/#

Our First Container

• We can use our linux
commands here

• The pwd command shows
we’re currently at the
filesystem root

• The ls command lists all
the fils and directories at
the root of the filesystem

• The cd command will take
us to root’s home directory

Docker

Our First Container

• We can exit our container by typing the exit command

• This returns us to our host

• We can list all the running or stopped containers with the docker ps -a
command

Docker

Our First Container

• Docker containers are not removed by default

• Remove an exited container with docker rm [container id]

• Can also remove containers by name with docker rm [container name]

Docker

Our First Container

• You can list images you
currently have locally with the
docker images command

Docker

Our First Container

• While still smaller than full
Virtual Machine images,
docker images can still clutter
up your local storage

• Use  
docker rmi [image id] or
docker rmi [image:tag]
to remove them

Docker

Our First Container

• Some additional run options

• The -name option sets the
friendly name of the container

• The --rm option automatically
removes the container upon
exit

Docker

$ docker run -it —rm -name python python:3.10 bash

Our First Container

• Official Docker
extension for VS Code
is pretty useful

Docker

First Steps

• Our CLI commands are already getting longer and harder to remember.

• Linux offers us a way to wrap up a set of commands into a script file that can
be executed

• This works by default for macOS and Linux based laptops

• Windows uses PowerShell by default and can do similar things

Automation

$ docker run -it —rm -name python python:3.10 bash

First Steps

• With a folder opened in VS Code, click on the new file icon next to the folder
name in the Explorer tab

• Type in the name of the new file. For example run.sh

• The new file will open in a new tab in the Editor pane

Automation

Bash Shell Script

• Instead of having everything on
one line, it is often easier to break
a command across multiple lines.

• Shell commands can be
continued to a new line by having
a backslash character as the final
character on a line

Automation

Bash Shell Script

• Before you can execute a shell
script, you must flag it as
executable

• The chmod command lets you
change modes on a file

• The +x option adds the execute
mode to the file

• Run the command with 
 ./[filename]

Automation

next up: docker images in depth

