
PHP + MySQL

• MySQL on the command line is great and all… well
not its not really that great

• Using MySQL in PHP is somewhat similar to the
command line:

• Set up a connection to a MySQL database

• Issue a bunch of commands to the database

PDO

• PHP Data Objects

• The modern way to access databases from within
PHP

• No more mysql_connect, mysql_query, etc.

• No, the mysqli commands aren’t really any better.

PDO Connection

• Still need the same pieces of data:

• Database host

• Username

• Password

PDO Connection

• We make a new PDO object based off the data
source properties

• Can make PDO objects for a wide variety of
databases, not just MySQL

$dsn = 'mysql:dbname=cs337;host=localhost';
$user = 'root';
$password = 'somepassword';

$db = new PDO($dsn, $user, $password);

PDO Connection

• For our AWS Servers, access is only available from
localhost, and no user/password is required

$dsn = 'mysql:dbname=cs337;host=localhost';

$db = new PDO($dsn);

• Once we have a connection set up, we can start
talking to our database using our newly created
object

<?php

$dsn = 'mysql:dbname=cs337;host=localhost';
$user = 'root';
$password = 'somepassword';
$db = new PDO($dsn, $user, $password);

// Get the submitted form data
$name = $_REQUEST['name'];
$phone = $_REQUEST['phone'];
$email = $_REQUEST['email'];

// Create our insert query
$sql = "INSERT INTO staff (name, phone, email)
 VALUES ('{$name}','{$phone}','{$email}')";
$db->query($sql);

// Create our insert query
$sql = "INSERT INTO staff (name, phone, email)
 VALUES ('{$name}','{$phone}','{$email}')";

• Here we have a PHP string surrounded by double
quotes.

• Inside, we have variables $name, $phone, $email

• These will be replaced with their actual string
contents.

• The curly braces { } help PHP limit variable name
searching

Aside: PHP Strings & Variable Expansion

• Variable expansion only happens inside double quoted
strings

• Single quoted strings are evaluated as literals

Aside: PHP Strings & Variable Expansion

<?php

ini_set('display_errors', 'on');
error_reporting(E_ERROR | E_WARNING
 | E_NOTICE | E_PARSE);

$height = 100;

echo "$heightpx";
echo "\n";

echo "{$height}px";
echo "\n";

echo '$heightpx';
echo "\n";

echo '{$heigh}tpx';
echo "\n";

Congratulations!
You now know just enough to be very dangerous…

Security Concerns

• Trusting user input is very dangerous

• SQL Injection and Code Injection

• Cross Site Scripting attacks

• Examples

Prepared Statements

• Allows us to make sure that nothing can ‘break out’
of the SQL statement.

• Much more secure than trying to build SQL
statements through string concatenation.

• If you encounter mysql_query or mysqli_query,
you should really consider refactoring to use PDO.

Prepared Statements
<?php
ini_set('display_errors', 'on');

$dsn = 'mysql:dbname=cs337;host=localhost';
$user = 'root';
$password = 'password';
$db = new PDO($dsn, $user, $password);

$sql = "SELECT * FROM staff
 WHERE phone=? AND name=?";

$stmt = $db->prepare($sql);
$stmt->execute(array("626-1541", "Jan"));

$results = $stmt->fetchAll(PDO::FETCH_CLASS);

print_r($results);

Prepared Statements
$stmt = $db->prepare($sql);
$stmt->execute(array("626-1541", "Jan"));

• We call the PDO::prepare() method first

• This returns a new PDOStatement object

• We then call the execute() method on the newly
created PDOStatement, not on the PDO object

http://php.net/manual/en/class.pdostatement.php

$stmt = $db->prepare($sql);
$stmt->execute(array("626-1541", "Jan"));

• We then call the execute() method on the newly
created PDOStatement, not on the PDO object

• We pass along an array of replacement values in an
array to the execute method

• The order of the array values must match the SQL

http://php.net/manual/en/class.pdostatement.php

$sql = "SELECT * FROM staff
 WHERE phone=? AND name=?";

• Note that you do not enclose the ? placeholders in
single quotes

• The PDO layer and database takes care of quoting
strings for us

$sql = "SELECT * FROM staff
 WHERE phone=? AND name=?";

Prepared Statements

$sql = "INSERT INTO staff (name, phone, email)
 VALUES ('{$name}','{$phone}','{$email}')";

PHP Objects
Round Two

More Object-y Things

• OOP - Object Oriented Programming

• PHP supports just about all OOP patterns

• Static Object calls vs Instantiated

Inheritance

• Basically, Class A can inherit from Class B

• Define properties and behavior on a “Parent” class
which can be inherited by “Child” classes.

• Example

Inheritance<?php

class droid
{
 private $name = "";

 public function __construct($setName) {
 $this->name = $setName;
 }

 public function status() {
 echo "I'm {$this->name} the "
 . get_class($this) . ".\n";
 }
}

class protocolDroid extends droid {
 public function translate() {
 return "Beep boop";
 }
}

class astromechDroid extends droid {
 public function pilot() {
 return "Zzzooooooom!";
 }
}

$c3po = new protocolDroid("C3PO");
$c3po->status();

$r2 = new astromechDroid("R2D2");
$r2->status();

• droid is the Parent Class

• Two Child Classes

• protocolDroid &
astromechDroid

<?php

class droid
{
 private $name = "";

 public function __construct($setName) {
 $this->name = $setName;
 }

 public function status() {
 echo "I'm {$this->name} the "
 . get_class($this) . ".\n";
 }
}

• The droid class defines a status() method.

Inheritance

Inheritance
<?php

class droid
{
 private $name = "";

 public function __construct($setName) {
 $this->name = $setName;
 }

 public function status() {
 echo "I'm {$this->name} the "
 . get_class($this) . ".\n";
 }
}

class protocolDroid extends droid {
 public function translate() {
 return "Beep boop";
 }
}

• Inheritance is the big
idea.

• PHP implements this via
the extends keyword.

• Here the
protocolDroid class
extends the droid
class.

Inheritance

class protocolDroid extends droid {
 public function translate() {
 return "Beep boop";
 }
}

• When one class extends another, it is inheriting the
properties and methods of the parent class.

Inheritance
<?php

class droid
{
 private $name = "";

 public function __construct($setName) {
 $this->name = $setName;
 }

 public function status() {
 echo "I'm {$this->name} the "
 . get_class($this) . ".\n";
 }
}

class protocolDroid extends droid {
 public function translate() {
 return "Beep boop";
 }
}

• When a Child class
extends a Parent class,
the Child class inherits
the methods and
properties of the Parent.

• (that sounds suspiciously like something
that may turn up on a final)

• Here the protocolDroid
class will have a
status() method, even
though it doesn’t define it
itself.

Inheritance<?php

class droid
{
 private $name = "";

 public function __construct($setName) {
 $this->name = $setName;
 }

 public function status() {
 echo "I'm {$this->name} the "
 . get_class($this) . ".\n";
 }
}

class protocolDroid extends droid {
 public function translate() {
 return "Beep boop";
 }
}

class astromechDroid extends droid {
 public function pilot() {
 return "Zzzooooooom!";
 }
}

$c3po = new protocolDroid("C3PO");
$c3po->status();

$r2 = new astromechDroid("R2D2");
$r2->status();

• The get_class() PHP
function returns a string
containing the name of the
class.

• The Child classes do not
implement their own
constructor, so the
Parent’s is used.

Inheritance Demo
php/inheritance.php

Encapsulation

• Fancy way of saying “hiding things from people”

• Allows the developer of a Class a way to keep the
implementation details of the Class hidden from the
outside of that Class.

• Allows for selective inheritance.

Encapsulation Case Study

• Suppose we have a Class describing a Ticketing
service.

• Our Ticketing service can create a support ticket,
update a ticket, retrieve a ticket, etc.

Ticket Example

• Our basic Class
describing a ticketing
service.

• Uses a Database to
store data.

• Methods for creating /
getting tickets.

<?php

class ticketer {

 // Property to hold our database connection
 public $db;

 public function __construct() {
 // Connect to our database
 $this->db = new PDO($dsn, $user, $pass);
 }

 public function newTicket() {
 $sql = "INSERT INTO tickets";
 $stmt = $this->db->prepare($sql);
 $stmt->execute();
 $newTicketID = $this->getLastInserID();
 return $this->getTicket($newTicketID);
 }

 public function getTicket($ticketID) {
 // ...
 }

}

php/ticket_class.php

Ticket Example

• A sample bit of code
that uses our ticketer
class

• Creates a new instance
of our ticketed class.

• Creates a new ticket.

<?php

require "ticket_class.php";

$tickets = new ticketer();

$newTicket = $tickets->newTicket();

php/ticket_example.php

Ticket Example
• We want to do some

additional querying
that’s not built into the
ticketer class

• Grab the  
ticketer::$db
property from our object.

• Execute our own local
SQL queries.

<?php

require "ticket_class.php";

$tickets = new ticketer();

$newTicket = $tickets->newTicket();

$ticketDB = $tickets->db;

$sql = "SELECT * FROM tickets WHERE ...";
$stmt = $ticketDB->prepare($sql);
$stmt->execute();
$results = $stmt->fetchAll();

php/ticket_example.php

<?php

class ticketer {

 // Property to hold our database connection
 public $db;
 ...

Ticket Example

• Alice decides MySQL
was too slow

• Switched to Redis for
our data store backend.

<?php

class ticketer {

 // Property to hold our redis connection
 public $redis;

 public function __construct() {
 // Connect to our redis source
 $this->redis = new redis($host, $port,
$user, $pass);
 }

 public function newTicket() {
 $t = $this->newTicketTemplate();
 $t->id = $this->newTicketID();
 $this->redis->add($t);
 return $t;
 }

 public function getTicket($ticketID) {
 // ...
 }

}

php/ticket2_class.php

http://redis.io

Ticket Example

• What happens to our
code that depended on
getting a reference to
the database
connection?

<?php

require "ticket_class.php";

$tickets = new ticketer();

$newTicket = $tickets->newTicket();

$ticketDB = $tickets->db;

$sql = "SELECT * FROM tickets WHERE ...";
$stmt = $ticketDB->prepare($sql);
$stmt->execute();
$results = $stmt->fetchAll();

php/ticket_example.php

visibility

• PHP gives us tools to prevent access to properties and
methods from outside of the object itself.

• This is known as visibility

• public

• private

• protected

http://php.net/manual/en/language.oop5.visibility.php

public

• Public properties and methods are available to any code
that references the class or instantiated objects.

• This is why we were able to get a reference to the
ticketer database property.

<?php

class ticketer {

 // Property to hold our database connection
 public $db;
 ...

<?php

require "ticket_class.php";

$tickets = new ticketer();

$newTicket = $tickets->newTicket();

$ticketDB = $tickets->db;

$sql = "SELECT * FROM tickets WHERE ...";
$stmt = $ticketDB->prepare($sql);

private
• I lied a little bit back there when we talked about inheritance

• Private properties and methods are only available within the
object instances itself.

• This would prevent anyone from getting a reference to the
ticketer database property.
<?php

class ticketer {

 // Property to hold our database connection
 private $db;
 ...

<?php

require "ticket_class.php";

$tickets = new ticketer();

$newTicket = $tickets->newTicket();

$ticketDB = $tickets->db;

$sql = "SELECT * FROM tickets WHERE ...";
$stmt = $ticketDB->prepare($sql);

This would cause a fatal error now

protected
• Protected properties and methods are available only

within the object instances itself and any subclasses.

<?php
class droid
{
 protected $name = "";

 public function __construct($setName) {
 $this->name = $setName;
 }

 public function status() {
 echo "I'm {$this->name} the "
 . get_class($this) . ".\n";
 }
}

class astromechDroid extends droid {
 public function pilot() {
 return "Zzzooooooom!";

<?php
class droid
{
 protected $name = "";

 public function __construct($setName) {
 $this->name = $setName;
 }

 public function status() {
 echo "I'm {$this->name} the "
 . get_class($this) . ".\n";
 }
}

class astromechDroid extends droid {
 public function pilot() {
 return "Zzzooooooom!";
 }

 public function description() {
 $desc = "Astromech Droid: ";
 $desc .= $this->name;
 return $desc;
 }
}

$r2 = new astromechDroid("R2D2");
echo $r2->description() . "\n";

echo $r2->name . "\n";

OK

Not OK

php/visibility.php

Static Access

• Up to now we’ve mostly been instantiating our
classes as objects

• But we don’t have to!

• Maybe you don’t want a whole bunch of distinct
objects, maybe you want a utility class?

Static Access
• Using the static keyword

<?php

ini_set('display_errors', 'on');

class util {
 public static function pow($base, $power) {
 $product = 1;
 for ($i = 0; $i < $power; $i++) {
 $product = $product * $base;
 }
 return $product;
 }
}

echo util::pow(2, 8) . "\n";

Static Access

• Using the className::method() syntax we can
call a static method directly from the Class
definition without having to create an instance of
that Class.

• Can also access static properties in a similar way.

• Also used to reference constants on Classes.

util::pow(2, 8);

Constants
• Classes can define

constants

• Constants cannot be
modified at runtime

• Good for things you know
won’t change, like a version
number or other setting.

<?php

class util {

 const HOSTNAME = 'localhost';
 const CURRENT_VERSION = '1.7.10';

}

echo util::CURRENT_VERSION . "\n";

Working with JSON
• PHP has built in support for dealing with JSON

encoded data

• Convert JSON text to PHP data structures:

• $var1 = json_decode(string);

• Convert PHP data structures to JSON

• $json = json_encode($var1);

• Examples

