PHP + MySQL

 MySQL on the command line is great and all... well
not its not really that great

e Using MySQL in PHP is somewhat similar to the
command line:

e Set up a connection to a MySQL database

e |ssue a bunch of commands to the database

PDO

PHP Data Objects

The modern way to access databases from within
PHP

No more mysqgl connect, mysqgl query, etc.

No, the mysgli commands aren’t really any better.

PDO Connection

e Still need the same pieces of data:
e Database host
e Username

e Password

PDO Connection

$dsn = 'mysql:dbname=cs337;host=localhost’;
$user = 'root';
$password = 'somepassword';

$db = new PDO($dsn, $user, $password);

 We make a new PDO object based off the data
source properties

 Can make PDO objects for a wide variety of
databases, not just MySQL

PDO Connection

e For our AWS Servers, access is only available from
localhost, and no user/password is required

$dsn = 'mysql:dbname=cs337;host=1ocalhost’;

$db = new PDO($dsn);

 Once we have a connection set up, we can start
talking to our database using our newly created
object

<?php

$dsn = 'mysql:dbname=cs337;host=1localhost"’;
$user = 'root’;

$password = 'somepassword’;

$db = new PDO($dsn, $user, $password);

// Get the submitted form data
$name = $ REQUEST['name’];
$phone = $ REQUEST['phone’];
$email = $ REQUEST['email'];

// Create our insert query

$sgql = "INSERT INTO staff (name, phone, email)
VALUES ('{$name}', '{$phone}’, '{$email}"')";

$db->query($sql);

B ———

Aside: PHP Strings & Variable Expansion

// Create our insert query
$sgl = "INSERT INTO staff (name, phone, email)
VALUES ('{$name}', '{$phone}’, '{$email}')";

 Here we have a PHP string surrounded by double
quotes.

Inside, we have variables $name, $phone, $email

These will be replaced with their actual string
contents.

 The curly braces { } help PHP limit variable name
searching

Aside: PHP Strings & Variable Expansion

e Variable expansion only happens inside double quoted
strings

e Single quoted strings are evaluated as literals

<?php php — bash — 54x16

ini set('display errors', ‘'on'); ~/php 4php string_quotes.php

error_reporting(E_ERROR | E_WARNING

| E_NOTICE | E_PARSE); Notice: Undefined variable: heightpx in /Users/markfis

cher/Dropbox/Classes/CS 337/website/examples/php/strin

$height = 100; g_quotes.php on line 8

echo "$heightpx"; 100px

echo "\n"; $heightpx
{$heigh}tpx

echo "{$height}px"; ~/php #]]

echo "\n";

echo '$heightpx';
echo "\n";

echo '{$heigh}tpx’;
echo "\n";

Congratulations!

You now know just enough to be very dangerous...

HI, THIS 1S

YOUR SONS SCHOOL.

WERE HAVING SOME
(COMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN AWAY /

St

DID YOU REALLY
NAME YOR SON
Robert'); DROP
TABLE Students; -~ 7

!

~ OH.YES. UTTLE
RBOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPPY.

{

AND I HOPE
< YOUVE LEARNED
L TOSANMIZE YOUR
DATARASE INPUTS.

Security Concerns

Trusting user input Is very dangerous
SQL Injection and Code Injection
Cross Site Scripting attacks

Examples

Prepared Statements

e Allows us to make sure that nothing can ‘break out’
of the SQL statement.

 Much more secure than trying to build SQL
statements through string concatenation.

e |f you encounter mysgl query or mysqli_query,
you should really consider refactoring to use PDO.

Prepared Statements

<?php
ini set('display errors', 'on'); 4 markfischer — ssh — 59x18
bitnami@linux:~/cs337$ php pdo_prepared_statement.php

$dsn = 'mysql:dbname=cs337;host=1ocalhost’; éﬂvy
$user' = 'root’) [@] => stdClass Object

$password = ‘password’; «
$db = new PDO($dsn, $user, $password); [id] => 5

[name] => Jan
[phor_1e] = E:>26?1541 . .
$sq 1 = "SELECT * FROM staff [email] => jknight@email.arizona.edu

WHERE phone=? AND name=?";

)
$stmt = $db->prepare($sql); bitnami@linux:~/cs337$ []
$stmt->execute(array("626-1541", "Jan"));

$results = $stmt->fetchAll(PDO::FETCH CLASS);

print_r($results);

Prepared Statements

$stmt = $db->prepare($sql);
$stmt->execute(array("626-1541", "Jan"));

 We call the PDO: :prepare() method first
e This returns a new PDOStatement object

 We then call the execute() method on the newly
created PDOStatement, not on the PDO object

http://php.net/manual/en/class.pdostatement.php

$stmt = $db->prepare($sql);
$stmt->execute(array("626-1541"¢

 We then call the execute() method on the newly |
created PDOStatement, not on the PDO object

 We pass along an array of replacement values in an
array to the execute method

* The order of the array values must match the SQL_~ |

$sql = "SELECT * FROM staff—", _
WHERE phone=24AND name=?%

http://php.net/manual/en/class.pdostatement.php

Prepared Statements

* Note that you do not enclose the ? placeholders in
single quotes

 The PDO layer and database takes care of quoting
strings for us

$sgl = "SELECT * FROM staff
WHERE phone=? AND name=?";

ST

—

(nameagi®Shic, email)

$sql = "INSERT HYimia ‘
e . | {femaill}’)";

VALUES ('{$h55éf5?1;

B
(9 >
: .,0,

PHP Objects

Round Two

More Object-y Things

 OOP - Object Oriented Programming
 PHP supports just about all OOP patterns

e Static Object calls vs Instantiated

Inheritance

» Basically, Class A can inherit from Class B

* Define properties and behavior on a “Parent” class
which can be inherited by “Child” classes.

 Example

<?php

class droid

{ mun

private $name = "";

public function _ construct($setName) {
$this->name = $setName;

}

public function status() {
echo "I'm {$this->name} the "
. get class($this) . ".\n";
}
}

class protocolDroid extends droid {
public function translate() {
return "Beep boop";

}
}

class astromechDroid extends droid {
public function pilot() {
return "Zzzooooooom!";
}
}

$c3po = new protocolDroid("C3P0");
$c3po->status();

$r2 = new astromechDroid("R2D2");
$r2->status();

Inheritance

e droid is the Parent Class
 Two Child Classes

 protocolDroid &
astromechDroid

php — fischerm@workbench:/etc/httpd/...

~/php 4 php inheritance.php
I'm C3P0 the protocolDroid.
I'm R2D2 the astromechDroid.

~/php &I:I

<?php

class droid |nheritance

{

private $name = "";

public function construct($setName) {
$this->name = $setName;

¥

public function status() {
echo "I'm {$this->name} the "
. get class($this) . ".\n";

 The droid class defines a status() method.

Inheritance

<?php

class droid

{

}

class protocolDroid extends droid {
public function translate() {

}

private $name = ""

public function construct($setName) {

}

$this->name = $setName;

public function status() {

}

¥

echo "I'm {$this->name} the "

. get_class($this) . ".\n";

return "Beep boop"”;

Inheritance is the big
idea.

PHP implements this via
the extends keyword.

Here the
protocolDroid class
extends the droid
class.

Inheritance

 When one class extends another, it is inheriting the
properties and methods of the parent class.

class protocolDroid extends droid {
public function translate() {
return "Beep boop";

}
¥

Inheritance

« When a Child class
ace droid extends a Parent class,
U rivate gname =) the Child class inherits
eblic function conetruct(Seetiame) | the methods and

$this->name = $setName; prOpertieS Of the Pal’eﬂt
}

<?php

public function status() {

echo "I'm {$this.>name} the " * (that sounds suspiciously like something

. get class($this) . ".\n"; that may turn up on a final)

}

}
 Here the protocolDroid

class protocolDroid extends droid { | 1

public function translate() { Class wi ave a

return "Beep boop"; status() method, even

) I though it doesn’t define it

itself.

<?php

Inheritance

{

private $name = "";

public function _ construct($setName) {

$this->name = $setName; ° The get_c lass () PHP
function returns a string

}

public function status() {

ho "I'm {$this- the " .
TR0 et class(Shisy - *An'; containing the name of the
}
) class.
class protocolDroid extends droid {
public function translate() { .
| return "Beep boop * The Child classes do not
) implement their own
class astromechDroid extends droid { C:()r]sstrtjc:t()r’ SO tFWEB
public function pilot() {
return "Zzzooooooom!"; ‘a |
} Parent’s is used.
}
$c3po = new protocolDroid("C3P0");
$c3po->status(); php — fischerm@workbench:/etc/httpd/...
. ~/php 4 php inheritance.php
$r2 = new astromechDroid("R2D2"); I'm C3P0 the protocolDroid.

$r2->status(); I'm R2D2 the astromechDroid.

~/php 4|:|

Inheritance Demo

php/inheritance.php

Encapsulation

e Fancy way of saying “hiding things from people”

* Allows the developer of a Class a way to keep the
implementation details of the Class hidden from the
outside of that Class.

e Allows for selective inheritance.

Encapsulation Case Study

* Suppose we have a Class describing a Ticketing
service.

o Qur Ticketing service can create a support ticket,
update a ticket, retrieve a ticket, etc.

<?php

Ticket Example

php/ticket class.php

class ticketer {

// Property to hold our database connection

public $db;

public function _ construct() {

}

// Connect to our database
$this->db = new PDO($dsn, $user, $pass);

public function newTicket() {

}

$sgql = "INSERT INTO tickets";
$stmt = $this->db->prepare($sql);
$stmt->execute();

$newTicketID = $this->getLastInserID();
return $this->getTicket($newTicketID);

public function getTicket($ticketID) {

}

/] ...

Our basic Class
describing a ticketing
service.

Uses a Database to
store data.

Methods for creating /
getting tickets.

Ticket Example

php/ticket example.php

<?php

require "ticket_class.php";

$tickets = new ticketer(); e A Sample bit of code
$newTicket = $tickets->newTicket(); that uses our ticketer
class

e Creates a new instance
of our ticketed class.

e Creates a new ticket.

Ticket Example

php/ticket example.php

<?php

require "ticket_class.php”; * We want to do some
$tickets = new ticketer(); additional querying
$newTicket = $tickets->newTicket(); that’s not built into the

ticketer class
$ticketDB = $tickets->db;

$sql = "SELECT * FROM tickets WHERE ...";
$stmt = $ticketDB->prepare($sql);
$stmt->execute();

$results = $stmt->fetchAll();

» Grab the
ticketer::$db
property from our object.

<?php
e Execute our own local

SQL queries.

class ticketer {

// Property to/'i”a our database connection

public $db; “

Ticket Example

php/ticket2 class.php

<?php
class ticketer {

// Property to hold our redis connection
public $redis;

public function _ construct() {

Alice decides MySQL
// C tt di
$thi(s)ljr;i;diso=ozgwrﬁe3isigﬁg§$, $port, was tOO SlOW

$user, $pass);

} . .
public function newTicket() { ° SWItChed tO Redls fOI’

4t = $this->newTicketTemplate(); our data store backend.
$t->id = $this->newTicketID();

$this->redis->add($t);
return $t;

}

public function getTicket($ticketID) {
/] ...

}
, http://redis.io

Ticket Example

php/ticket example.php

<?php
require "ticket_class.php”;
$tickets = new ticketer();
$newTicket = $tickets->newTicket();

$ticketDB = $tickets->db;

$sql = "SELECT * FROM tickets WHERE ...";

$stmt = $ticketDB->prepare($sql);
$stmt->execute();
$results = $stmt->fetchAll();

 What happens to our
code that depended on
getting a reference to
the database
connection”

visibility
PHP gives us tools to prevent access to properties and
methods from outside of the object itself.
This is known as visibility
* public
* private

e protected

http://php.net/manual/en/language.oop5.visibility.php

public

Public properties and methods are available to any code
that references the class or instantiated objects.

This is why we were able to get a reference to the
ticketer database property.

<?php

require "ticket_class.php”;
<?php

class ticketer { $tickets = new ticketer();
// Property to hold our database connection $newTicket = $tickets->newTicket().
public $db;
- $ticketDB = $tickets->db;

$sql = "SELECT * FROM tickets WHERE

private

e | lied a little bit back there when we talked about inheritance

» Private properties and methods are only available within the
object instances itself.

e This would prevent anyone from getting a reference to the
ticketer database property.

<?php <?php

class ticketer { require "ticket class.php";

// Property to hold our database connection

private $db; $tickets = new ticketer();

$newTicket = $tickets->newTicket(

This would cause a fatal error now ———¥ $ticketds = $tickets->db;

$sal = "SELECT * FROM tickets WHE

protected

Protected properties and methods are available only
within the object instances itself and any subclasses.

<?php
class droid

{

protected $name = "";

public function _ construct($setName) {
$this->name = $setName;

}

public function status() {
echo "I'm {$this->name} the "
. get class($this) . ".\n";
}

}

class astromechDroid extends droid {
public function pilot() {

php/visibility.php

<?php
class droid

{

protected $name = "";

public function _ construct($setName) {
$this->name = $setName;

}

public function status() {
echo "I'm {$this->name} the "
. get class($this) . ".\n";
}

}

class astromechDroid extends droid {
public function pilot() {
return "Zzzooooooom!";

}

public function description() {
$desc = "Astromech Droid: ";

$desc .= $this->name; &
return $desc; qsmw“ngkx
}

} OK

$r2 = new astromechDroid("R2D2");
echo $r2->description() . "\n";

echo $r2->name . "\n";

Not OK

php — fischerm@workbench:/...

~/php 4php visibility.php
Astromech Droid: R2D2

Fatal error: Cannot access protected property astr
omechDroid: :$name in /Users/markfischer/Dropbox/Cl
asses/CS 337/website/examples/php/visibility.php o

n line 34
~/php 9|:|

Static Access

* Up to now we've mostly been instantiating our
classes as objects

e But we don’t have to!

 Maybe you don’t want a whole bunch of distinct
objects, maybe you want a utility class?

Static Access

* Using the static keyword

<?php
ini_set('display_errors', 'on');

class util {
public static function pow($base, $power) {
$product = 1;

for ($1 = 0; $i < $power; $i++) { php — fischerm@workben...
$product = $product * $base; ~/php %php static.php
} 256
~/ph
return $product; phe #1]

}
}

echo util::pow(2, 8) . "\n";

Static Access

util::pow(2, 8);

Using the className: :method() syntax we can
call a static method directly from the Class
definition without having to create an instance of

that Class.

Can also access static properties in a similar way.

Also used to reference constants on Classes.

Constants

<?php e (Classes can define
constants

class util {

const HOSTNAME = 'localhost’; ° Constants Cannoz‘ be
const CURRENT_VERSION = '1.7.10°; o .
modified at runtime
}
echo util::CURRENT VERSION . "\n"; * (Good for things you know
won't change, like a version
number or other setting.

Working with JSON

PHP has built in support for dealing with JSON
encoded data

Convert JSON text to PHP data structures:
e $varl = json _decode(string);
Convert PHP data structures to JSON

« $json = json_encode($varl);

Examples

