
MySQL
Not your SQL, understand?

MySQL
• Relational Database Management System

• RDBMS

• Stores stuff in Tables

• Tables have named columns

• Tables have multiple rows with the same columns for
each row

• Tables can be related to each other

Connecting
• AWS VM

• From your command line:
$ mysql

Databases
• show databases;

• Lists all the databases on this
server

• use <database>;

• Select a database to send
commands to

Looking At Tables

• show tables;

• Lists all tables in the database

• describe <tablename>;

• Print out the column structure of
the given table

SQL
• SQL - Structured Query Language

• An english like syntax to interact with a databases

• Basic Verbs initiate Commands

• SELECT

• INSERT

• UPDATE

• DELETE

CREATE TABLE
• Make a new table to hold stuff

• Think about the columns you want to have in your table

• Data Modeling

CREATE TABLE `staff` (
 `id` int(11) NOT NULL auto_increment,
 `name` varchar(1024) default NULL,
 `phone` varchar(1024) default NULL,
 `email` varchar(1024) default NULL,
 PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

MySQL Datatypes

• Several ways to hold a string

• CHAR and VARCHAR

• Also BLOB and TEXT

• Numbers

• INT, SMALLINT, BIGINT etc

• DECIMAL, NUMERIC, FLOAT, DOUBLE, BIT

• Dates & Times

• DATE, TIME, TIMESTAMP, DATETIME

http://dev.mysql.com/doc/en/data-types.html

CRUD
• You’ll hear people mention CRUD in connection

with databases

• Create

• Retrieve

• Update

• Delete

SQL
CRUD SQL Verb

Create INSERT

Retrieve SELECT

Update UPDATE

Delete DELETE

select
• Getting data out of tables

SELECT <fields> FROM <tables> [WHERE <conditions>];

select
• SQL is case in-sensitive

• These all work the same

• The Asterisk '*' means “All the fields in the tables”

• Can select just specific fields by specifying which
ones

select * from staff;
SELECT * FROM staff;
Select * From Staff;

selecting specific things
• The WHERE clause for a SELECT statement allows

us to limit the rows selected from a set of tables

SELECT * FROM staff WHERE name='Mark';

selecting specific things
• Doesn’t have to be an exact match – LIKE

• % is our wildcard match character for strings in SQL

SELECT * FROM staff WHERE name LIKE 'M%';

insert
• Adding new rows to a table

• Values must match positions with their field names

• Values must be correct for the datatype of the field

• Strings must be surrounded by single quotes – 'some string'

INSERT INTO <table>
(field1, field2, ...) VALUES (value1, value2, ...);

insert

• Why didn’t we specify the id
field?

• Where does the 8 come from?

INSERT INTO staff
(name, phone, email) VALUES
('Adam', '621-1541', 'adam@email.arizona.edu');

AUTO INCREMENT
• When defining a table, you can specify a PRIMARY KEY

field be AUTO INCREMENT

• This does pretty much what it sounds like

• Anytime a new row is inserted into the table, MySQL will
automatically assign a new value, incrementing an
internal counter

update
• Change a value for a field or set of fields.

UPDATE <table> SET field1=value1, field2=value2
WHERE [conditions];

• WATCH OUT!

• If you don’t specify any conditions, you will update
EVERY ROW!

update
UPDATE staff SET phone='626-TECH' WHERE id=1;

delete
• Deletes rows from a table

DELETE FROM <table> WHERE [conditions];

• WATCH OUT!

• If you don’t specify any conditions, you will
DELETE EVERY ROW!

DELETE FROM staff WHERE id=8;

Joins
• The Relational part of RDBMS

Joins
• You can SELECT from multiple tables in a single query

SELECT games.game_state,
 games.game_id,
 players_games.player_id
FROM players_games INNER JOIN games
 ON players_games.game_id = games.game_id;

Joins
• When specifying fields to select from multiple tables,

you prefix the field name by the table name

• tablename.fieldname

SELECT
 games.game_state,
 games.game_id,
 players_games.player_id
...

Table Name Field Name

SELECT games.game_state,
 games.game_id,
 players_games.player_id
FROM players_games INNER JOIN games
 ON players_games.game_id = games.game_id;

Lots Of Other Stuff
• Lots of built-in functions

• ABS, AVG, POW, RAND, SYSDATE, VARIANCE

• Standard Operators

• + - / * = > etc

• Stored Procedures

• Write your code directly in the database, then make
SQL calls to the functions

• Can store JSON natively now

• Transactions

Great!
Now go do all that from PHP!

