
PHP

http://xkcd.com/1421

PHP

• Personal Home Page

• PHP Hypertext Preprocessor

• Pretty Horrible Programming Language

Web ServerClient

CSS

HTML PHP

MySQL
JavaScript

HTTP

PHP

• PHP gets a lot of hate, but it is an easy to approach
language that is the basis for a lot of very
successful projects.

http://www.stroustrup.com/bs_faq.html#really-say-that

"There are only two kinds of languages: the ones
people complain about and the ones nobody uses"

—Bjarne Stroustrup (the creator of C++)

PHP: History
• 1994 - Rasmus Lerdorf wrote a series of Common Gateway

Interface (CGI) binaries in C to maintain his homepage.

• 1995 - Lerdorf released “PHP Tools 1.0”

• 1997 - Zeev Suraski and Andi Gutmans rewrote the parser which
formed the basis for PHP 3.

• 2000 - PHP 4 released

• 2004 - PHP 5 released, adding true objects, and an improved PHP
Standard Library

• PHP 5.6 - 2014 We'll be working on this version

• PHP 7 - Just released December 2015

http://en.wikipedia.org/wiki/PHP

PHP Basics
• PHP has a REPL too

• php -a

• Except it doesn’t work on windows…

Variables
• All PHP variables are prefixed with a dollar sign: $

• Variable names must start with a letter or an underscore.

• Variable names can consist of letters, numbers,
underscores, and the bytes 127 through 255.

Variables

• Like Javascript, variables in PHP are not typed.

• This doesn’t mean there are no types in PHP, it just
means that a particular named variable is not tied
to any one data type.

Type Checking
• Slight aside… Type Checking

• Instead of thinking about “Strongly Typed” or
“Untyped” languages, think about when type
checking is performed.

Compile Time Run Time

C Only None

Java Yes Yes

PHP None Only

Python None Only

Variables
• Variable names are case-sensitive. $foo and $FOO are different

variables.

• Variables do not need to be declared. They spring magically into
existence wherever they’re needed.

• This can be a good thing, and a bad thing.

$isComplete = true;

if ($iscomplete) {
 echo "All Done\n";
} else {
 echo "Not Done Yet\n";
}

var_dump()
• What’s in a variable?

• var_dump will show you the
type and contents of any
variable.

• Prints its output directly to
STDOUT

php > var_dump(3.1415);
float(3.1415)

Error Reporting

• You can change the level of error reporting.

• Config file, or at run time.

• Using error_reporting(…) at runtime

Error Reporting
• Setting the error reporting level down to E_NOTICE can

be very useful during development.

• Incredibly spammy in production!
error_reporting(E_ERROR | E_WARNING | E_NOTICE | E_PARSE);

$isComplete = true;

if ($iscomplete) {
 echo "All Done\n";
} else {
 echo "Not Done Yet\n";
}

PHP Structure
• PHP is sort of like the inverse of most languages

when it comes to what gets output.

• Most languages have special features for printing
things to the screen (or browser), and everything
else is code.

• PHP has special features for defining where the
code is, and everything else is output!

PHP Structure

#!/usr/bin/perl

use strict;

my $timestamp = time();

print "<!doctype html>\n";
print "<html>\n";
print "<head>\n";
print " <title>Hello World</title>\n";
print "</head>\n";
print "<body>\n";
print " <h1>Hello World: " . $timestamp . "</h1>\n";
print "</body>\n";
print "</html>\n";

• A Perl program and its output

PHP Structure

<!doctype html>
<html>
<head>
 <title>Hello World</title>
</head>
<body>
 <h1>Hello World: <?php echo time(); ?></h1>
</body>
</html>

• A PHP program and its output

PHP Structure

• The PHP parsing engine only executes code the
follows a <?php sequence.

• The closing portion ?> is required to stop parsing
of PHP code

• The End of File (EOF) is treated the same as a
closing ?>

PHP Structure
• PHP Web Pages typically begin with HTML and

have blocks of PHP code interspersed within it.

• PHP Code Files typically begin with an opening
<?php tag right on the first line of the file, and
then have no closing ?> tag, leaving the EOF to
close the PHP code.

• This prevents stray characters outside of the
<?php // code ?> blocks from being sent as
output

PHP Structure
<!doctype html>
<html>
<head>
 <title>Hello World</title>
</head>
<body>
 <h1>Hello World: <?php echo time(); ?></h1>
</body>
</html>

<?php
/**
 * Sample PHP Class
 * filename: php/structure1.php
 */
class first {
 private $foo;
 private $bar;

 public __construct() {
 $this->foo = "4";
 $this->bar = "2";
 }

 public answer() {
 return $this->foo . $this->bar;
 }
}

Web Page

Pure Code File

Web Servers and PHP

• The Web Server does a lot before PHP ever gets
invoked.

• PHP does a lot of setup work before our code gets
invoked

Web Servers and PHP

Web Server

Incoming HTTP
Request

PHP engine

Looks for requested
resource

If resource is a PHP
file, passes off to PHP

Sets up a bunch of
environment based on

server and request
Runs our code!

Our code’s output
text is returned to

the web serverResponse Sent
To Client

Web Servers and PHP

• What’s in all that setup that the web server and PHP
does before we ever get to our code?

• The Web Server may re-write the request path, add
additional information, etc.

• PHP creates a set of “Super Global” variables
which we have access to.

$_SERVER
• The $_SERVER

superglobal contains a
bunch of information
about the request, the
server, and our
environment.

<!doctype html>
<html>
<head>
 <title>php/globals_server.php</title>
</head>
<body>
 <pre>
 <?php print_r($_SERVER); ?>
 </pre>
</body>
</html>

$_GET

• The $_GET superglobal contains all variables
passed in via the Query String portion of the URL

Query String

http://user:pass@example.com:80/path?query=yes#fragment

Scheme

Username
Password

Host Port

Path Query String

Fragment

• Key / Value Pairs

• URL Encoded Values

Forms

• Forms processing is one of
the major uses for server
side code.

• More HTML elements!!

• Example

Forms
• A bunch of

different HTML
form elements.

<form>
• The <form> element defines an HTML form, and

dictates where the form data is sent, and how.

• the action attribute says where to send this
form’s data when the form is submitted.

• the method attribute says how to send the data,
either with an HTTP GET command or POST.

 <form action="forms3.php" method="POST">
 <input type="text" name="input" size="20">
 <input type="submit" value="GO!">
 </form>

<input>
• The <input> element is the

basic, and most flexible of
the form elements.

• Basic text input fields.

• Submit buttons.

• Password fields.

• Checkboxes and radio
buttons

<input type="text" name="input" size="20">

<input type="checkbox" name="check" checked>

<input type="radio" name="radioset">

<input type="submit" value="A Submit Button">

$_GET and $_POST

• PHP provides us with these superglobal arrays

• User input

• Don’t Trust it!

$_POST

• The $_POST superglobal array contains all key/
value pairs passed in via a POST HTTP request.

• Usually as the result of a Form submission

$_POST

<!doctype html>
<?php
 $input = "";
 if (!empty($_POST)) {
 $input = print_r($_POST, true);
 }
?>
<html>
<head>
 <title>php/forms1.php</title>
</head>
<body>
 <h1>A Sample Form</h1>
 <form action="forms1.php" method="POST">
 <input type="text" name="input" size="20">
 <input type="submit" value="GO!">
 </form>
 <pre>
 <?php echo $input; ?>
 </pre>
</body>
</html>

Datatypes

• PHP only does type checking at run time.

• Variables have an internal type, but are
aggressively type converted based on situation.

Datatypes
• Boolean

• Integer

• Float (Double)

• String

• Array

• Object

• Resource

• NULL

http://php.net/manual/en/language.types.php

Built In Functions
• PHP has ‘em. Seriously, lots of them.

• Different from Java, or C, where the language
defines very little in the way of functionality.

• Functions are included manually via import
statements.

• PHP defines hundreds of built-in functions,
available in the global scope.

String Functions
• Its probably more useful to talk about datatypes as

they relate to built in functions.

http://php.net/manual/en/book.strings.php

echo Outputs a string

printf Print a C style formatted string

strlen Gets the length of a string

strtoupper Returns an uppercase string

trim Remove whitespace from the beginning and end of a string

ucfirst Uppercase the first character of a string

nearly 100 more…

String Functions

http://php.net/manual/en/book.strings.php

<?php
$s = "a long time ago...\n";

echo $s;
echo strlen($s) . "\n";
echo strtoupper($s);
echo ucfirst($s);

$w = " a padded string ";
echo "'" . $w . "'\n";
echo "'" . trim($w) . "'\n";

String Escaped Characters
<?php
$s = "a long time ago...\n";

echo $s;
echo strlen($s) . "\n";
echo strtoupper($s);
echo ucfirst($s);

$w = " a padded string ";
echo "'" . $w . "'\n";
echo "'" . trim($w) . "'\n";

• Standard sort of
escape mechanism for
things like newlines and
tabs.

• \n for a newline

• \t for a tab

String Concatenation
<?php
$s = "a long time ago...\n";

echo $s;
echo strlen($s) . "\n";
echo strtoupper($s);
echo ucfirst($s);

$w = " a padded string ";
echo "'" . $w . "'\n";
echo "'" . trim($w) . "'\n";

• The period . is our
concatenation operator
in PHP

Integers
• Formally, an integer in PHP is a member of the set:

 ℤ = {…, -2, -1, 0, 1, 2, …}

• $a = 0; // A decimal integer

• $a = -123; // A negative decimal integer

• $a = 0123; // An octal integer: 83

• $a = 0x2A; // A hexadecimal integer: 42

• $a = 0b11111111; // A binary integer: 255

Floats

• Floats, Doubles, Reals. PHP calls them all Floats

• $a = 3.1415;

• $a = 1.2e4;

• $a = 7E-10;

• All ways to define a float value

Arithmetic Operators
• You can, you know… do math, and stuff.

• PHP will convert an integer to a float before arithmetic

• $a = 1 + 2; // int = int + int

• $a = 5 - 2.45; // float = (int cast to float) + float

• $a = 5.5 / 0.5; // float = float ÷ float

Arithmetic Operators
$a + $b Addition

$a - $b Subtraction

-$a Negation

$a / $b Division

$a * $b Multiplication

$a % $b Modulo

$a ** $b Exponent
($a raised to the $b power) New in PHP 5.6

Arrays
• Arrays in PHP are all ordered

Maps under the hood.

• A map associates Keys and
Values

• The basic array structure
associates numerical keys
(0, 1, 2, 3, 4) with their
values.

• $a = array('a', 'b',
'c', 'd');

Arrays

• You can specify the keys for
arrays using the  
key => value syntax.

• $a = array('a' => 'A');

Arrays

• Any element who’s key is
not explicitly set receives
and auto-increment key.

• They start incrementing as
they’re used, so $a[0]
does not always indicate
the first element of an array!

<?php
$a = array(
 'a' => 'A',
 'B',
 'c' => 'C',
 'D'
);

Arrays
• Array values can be any

valid type.

• A given array can have
values of many different
types.

• You can have arrays as
values in an array element,
leading to complex nested
structures.

$a = array(
 'name' => 'Mark',
 'classes' => array(
 'cs245',
 'cs345',
 'cs453'
)
);

Array Functions
• There are quite a lot of array functions!

$a["foo"] = 1 Assigns the value 1 to the element with a key of “key”

array_push($a, 2) Appends a new element to the end of the array with a value 2

$a[] = 2 Same as above. Shortcut for array_push()

array_pop($a) Pops an element off the end of the array and returns its value.

array_keys($a) Returns an array of all the keys for the array $a

sort($a) Sort the elements in array $a by their keys.

There are 75 more!

http://php.net/manual/en/ref.array.php

print_r()
• Similar to var_dump(), print_r() will print the

contents of an object to STDOUT

• Can be made to return a string instead of printing
to STDOUT

• It doesn’t report anything about data types

• Looks a little bit nicer

• Doesn’t append line breaks

print_r()
• Similar to var_dump(), print_r()

will print the contents of an
object to STDOUT

• Can be made to return a string
instead of printing to STDOUT

• It doesn’t report as much about
data types (still some though)

• Looks a little bit nicer

• Doesn’t append line breaks
(except with arrays and objects)

Booleans

• Truth or dare! Well.. true or false

• Case insensitive

• true TRUE True trUE // All of these are true!

• FALSE false fALsE // Yup, all false

Booleans
• Most values in PHP are true, there are also many which are false.

• Some of the things that are false (there are others):

• false (well… duh)

• the integer value 0 // this one causes us problems later…

• the float value 0.0

• an empty string, i.e. ""

• an array with zero elements

• the special type NULL

• any unset variable (think undefined from javascript)

http://php.net/manual/en/language.types.boolean.php

Objects

• PHP gained true object oriented support in PHP 5.0

• Classes are declared and inherited

• Instances are created of classes via the new
keyword.

Objects
• Objects can have

properties, methods,
constructors

• Supports single
inheritance

• Supports public, private,
protected visibility

• Lots more on objects as
we go

class foo {
 private $a = 1;
 private $b = 2;

 public function f() {
 return $this->a + $this->b;
 }
}

Functions

• PHP began life as a procedural & function based
language.

• Only added Objects late in life.

• PHP loves functions.

Anatomy of a Function

function addTwo($a1, $a2)
{
 $sum = $a1 + $a2;
 return $sum;
}

function keyword

name of the function
argument list

(two args in this case)

{ } surround
function

statements

can return a single thing

Functions
• Functions can be

declared at the top
level, or inside other
functions

• Functions have global
scope, no matter where
they are declared

• Scope is different than
namespaces, we won’t
go into namespaces

<?php
function foo() {
 function foo2() {
 return "bar!";
 }

 return foo2();
}

// Cannot call foo2() here,
// it doesn't exist yet!

var_dump(foo());

// Now we can call foo2, its been
// defined by calling foo()
var_dump(foo2());

string(4) "bar!"
string(4) "bar!"

File IO

• Reading from a local or remote file is pretty straight
forward

• Writing to files is a bit more complicated

Reading from a File
• file_get_contents(“path/to/file”)

• Reads the entire contents of a file into memory and
returns it as a string.

<?php
$fileText = file_get_contents('file.txt');
echo $fileText;

• This example reads the entire contents of ‘file.txt’
into a variable called $fileText;

• fopen('path/to/file', 'r')

• Creates a file handle that can be referenced by
further function calls.

• Can open files in read mode, or write mode.

• Doesn’t read the entire file into memory, so useful
for working with large files, or for files where you
don’t want everything, just specific pieces.

Reading from a File

This is a text file.
It has a few lines of text in it.
Nothing much to see here.

file.txt

<?php
// Open a file handle to 'file.txt'
$fileHandle = fopen('file.txt', 'r');

// Read one line from the $fileHandle
$aLine = fgets($fileHandle);

// Read another line from the $fileHandle
$anotherLine = fgets($fileHandle);

echo $anotherLine;

~/php ⚡ php fopen.php
It has a few lines of text in it.
~/php ⚡

Remote Files
• Most PHP file operations that take a path can

accept any type of stream.

• Get the remote contents of a URL

<?php

$webpage = file_get_contents("http://www.example.com");

echo $webpage;

Objects
• PHP 5 introduced full well thought out objects.

Class
Definition

instantiation
via new keyword

Instance
Object

Instance
Object

Instance
Object

instantiation
via new keyword

instantiation
via new keyword

Objects

• Classes are defined
with the class
keyword.

• New objects are
created with the new
keyword.

<?php

class droid
{
 $type = "";

 function __construct($setType) {
 $this->type = $setType;
 }
}

$droid1 = new droid('protocol');
$droid2 = new droid('astromech');

<?php

class droid
{
 $type = "";
 $name = "";

 function __construct($setType) {
 $this->type = $setType;
 }

 function setName($n) {
 $this->name = $n;
 }

}

class keyword class name

properties

methods created
with function

keyword

$this referes
to the object

instance

Objects
• PHP uses the -> characters to do object access. Works

pretty much the same way that a period . does in Java
and Javascript.

<?php

$droid1 = new droid('astromech');

$droid1->setName('R2D2');

echo $droid1->name;

method call

property
access

Objects
• Special
__construct()
method

• This method is
called and passed
any parameters
when being
instantiated via the
new keyword.

<?php

class droid
{
 $type = "";

 function __construct($setType) {
 $this->type = $setType;
 }
}

$droid1 = new droid('protocol');
$droid2 = new droid('astromech');

Control Structures
• if .. else

• for

• foreach

• while

• continue

• break

if … elseif … else

<?php
$expression = false;

if ($expression == true) {
 echo "Something is true.\n";
} else {
 echo "Something is false.\n";
}

• Basic branching
logic.

• If an expression
is TRUE, do one
thing, otherwise
do something
else

http://php.net/manual/en/control-structures.elseif.php

if … elseif … else

<?php
$something = 'Green';

if ($something == 'Blue') {
 echo "Something is blue.\n";
} elseif ($something == 'Green') {
 echo "Something is green.\n";
} else {
 echo "Something is not Blue or Green.\n";
}

• Can test multiple
conditions with
the elseif
keyword

• It’s all one word –
elseif not two
words

• else if

for (;;) { }

• Basic C style for loop

<?php
$colors = array("red", "orange", "yellow");

for($i = 0; $i < count($colors); $i++) {
 echo "Color: " . $colors[$i];
}

for (;;) { }

for($i = 0; $i < count($colors); $i++) {
 …
}

Initialization
Condition Check Iteration Expression

http://php.net/manual/en/control-structures.for.php

foreach()

• Do something for each element in a collection

<?php
$colors = array("red", "orange", "yellow");

foreach($colors as $c) {
 echo "Color: $c\n";
}

foreach()

• Works on all types of keys, not just numerical

<?php
$person = array(
 "name" => "Mark Fischer",
 "role" => "Instructor"
);

foreach($colors as $key => $val) {
 echo "$key: $val\n";
}

while()

• Keep doing something until a condition is false

<?php
$fh = fopen('somefile.txt', 'r');

while ($line = fgets($fh)) {
 doWorkOn($line);
}

fclose($fh);

continue
• Stop this iteration of a loop, and go on to the next

iteration

<?php
$people = array(
 array("name" => "Mark Fischer","role" => "Instructor"),
 array("name" => "Margrit McIntosh","role" => "Student"),
 array("name" => "Michale Hirst","role" => "Student"),
);

// Echo only students
foreach($people as $p) {
 if ($p['role'] == "Instructor") {
 continue;
 }

 echo $p['name'] . "\n";
}

break
• Stops all iterations of a loop

<?php
$numbers = range(0, 100);

$numEvens = 0;
foreach($numbers as $n) {
 echo $n . "\n";

 if (($n % 2) == 0) {
 $numEvens++;
 }

 if ($numEvens >= 5) {
 break;
 }
}

Troubleshooting

• White Screen of Death

• Error Reporting

• Display Errors

PHP Sessions

• One way to solve the stateless nature of the Web

• Each Request is an isolated event

• How do we keep track of people between page
views?

Web Servers and PHP

Web Server

Incoming HTTP
Request

PHP engine

Looks for requested
resource

If resource is a PHP
file, passes off to PHP

Sets up a bunch of
environment based on

server and request
Runs our code!

Our code’s output
text is returned to

the web serverResponse Sent
To Client

Cookies
• Web browsers allow sites to store small bits of

information – cookies – locally on our computers

• Cookies are sent to the browser as part of the HTTP
response headers

• Sent back to the server on subsequent requests

• The server keeps track of who has which cookie ID,
and can keep track of visitors.

Cookies
Web ServerBrowser

Initial Page Request

Cookie SetBrowser
Stores Cookie

Value

Web Application
Creates and Stores
Cookie Value and
returns value in

response headers

Subsequent Page Request Web App sees cookies
in a Request.

Looks up the value
locally, and reconnects

visitor to stateResponse Sent

Browser
sends Cookies

back to the same
server

PHP Cookies
• PHP has a setcookie() function that handles the

details of constructing a properly formatted  
Set-Cookie response header.

// Set a new cookie
$value = "SomeValueString";
$cookieName = "CS337-Test-Cookie";
$expiration = time()+3600;
setcookie($cookieName, $value, $expiration);

http://localhost/cc337/p/cookies.php

PHP Sessions
• PHP has a session handling system built in.

• Based on cookies, and server-side file storage by
default.

• Beginning a PHP session sets a cookie on the
client.

• That cookie is then used to retrieve locally stored
data from the server, and present it in the
$_SESSION superglobal.

PH
P

Se
ss

io
ns

 E
xa

m
pl

e <?php
session_start();

// If we're POSTing to this page, its probably a form update
if (!empty($_POST)) {
 $newSavedString = $_POST['saveString'];
 $_SESSION['saveString'] = $newSavedString;
 // Redirect to the page via GET to fix the back button issue
 header('Location: sessions.php');
}
?>
<!doctype html>
<html>
<head>
 <title>php/sessions.php</title>
</head>
<body>
 <section>
 <h2>
 Current Saved String: <?php echo $_SESSION['saveString']; ?>
 </h2>
 </section>

 <section>
 <form action="sessions.php" method="POST">
 <input name="saveString" type="text">
 <input type="submit" value="Update Saved String">
 </form>
 </section>

</body>
</html>

PHP Sessions
• MUST call session_start() before

sending ANY response to the browser.

• Once the server begins sending text
back to the browser, all headers must
be sent first.

• Since sessions depend on cookies, the
cookie must be sent along with the
response headers, before any content.

<?php
session_start();

// If we're POSTing to this page, its probably a form update
if (!empty($_POST)) {
 $newSavedString = $_POST['saveString'];
 $_SESSION['saveString'] = $newSavedString;
 // Redirect to the page via GET to fix the back button issue
 header('Location: sessions.php');
}
?>
<!doctype html>
<html>
<head>
 <title>php/sessions.php</title>
</head>
<body>
 <section>
 <h2>
 Current Saved String: <?php echo $_SESSION['saveString']; ?>
 </h2>
 </section>

 <section>
 <form action="sessions.php" method="POST">
 <input name="saveString" type="text">

PHP Sessions
• What Can I keep in $_SESSION ?

• Any serializable value

• Scalars (int, float, string, bool, etc)

• Arrays – As long as all array elements are also
serializable

• Objects – Again, as long as all properties are
serializable

PHP Sessions
• What isn’t allowed in $_SESSION ?

• Mostly resources:

• Open file handles

• Network sockets

• Streams

• Closures

• Some objects – Any objects with references to non-serializable
things

Go Talk About MySQL

